3,810 research outputs found

    The High Speed Water Tunnel three-component balance

    Get PDF
    An experimental program was initiated in the High Speed Water Tunnel to measure force coefficients for hydrofoils under cavitating conditions. This program necessitated either a new force balance or a major modification of the existing one. Various balance configurations and pressure seal designs which were considered are described. A balance modification design was selected which consists of an appendage bolted between the existing balance and the water tunnel working section. This appendage alters the basic geometry of the force balance so that the model is now mounted on a parallelogram linkage instead of on a simple pivoted lever. The addition of the parallelogram force table suspension to the old balance renders the modified balance unresponsive to moments which in the old balance, interacted with forces and resulted in errors in the force readings. This modification which is described in detail was accomplished and resulted in a successful force balance capable of accurate measurement of forces on cavitating and noncavitating hydrofoils; and, in fact, it is expected to replace the old force balance for all force measurement work in the High Speed Water Tunnel. The cost and construction time for the balance modification were considerably less than would have been required for an entirely new force balance of comparable accuracy and sensitivity

    The Diffusion of Energy Efficiency in Building

    Get PDF
    We analyze the diffusion of buildings certified for energy efficiency across US property markets. Using a panel of 48 metropolitan areas (MSAs) observed over the last 15 years, we model the geographic patterns and dynamics of building certification, relating industry composition, changes in economic conditions, characteristics of the local commercial property market, and the presence of human capital, to the cross-sectional variation in energy-efficient building technologies and the diffusion of those technologies over time. Understanding the determinants and the rate at which energy-efficient building practices diffuse is important for designing policies to affect resource consumption in the built environment.

    The multiple-function multi-input/multi-output digital controller system for the AFW wind-tunnel model

    Get PDF
    A real time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in the selection of the sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary. The purpose here is to present the development, validation, and wind tunnel testing of this multiple-function digital controller system

    On-line analysis capabilities developed to support the AFW wind-tunnel tests

    Get PDF
    A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort

    Multiple-function multi-input/multi-output digital control and on-line analysis

    Get PDF
    The design and capabilities of two digital controller systems for aeroelastic wind-tunnel models are described. The first allowed control of flutter while performing roll maneuvers with wing load control as well as coordinating the acquisition, storage, and transfer of data for on-line analysis. This system, which employs several digital signal multi-processor (DSP) boards programmed in high-level software languages, is housed in a SUN Workstation environment. A second DCS provides a measure of wind-tunnel safety by functioning as a trip system during testing in the case of high model dynamic response or in case the first DCS fails. The second DCS uses National Instruments LabVIEW Software and Hardware within a Macintosh environment

    Quasar outflow energetics from broad absorption line variability

    Full text link
    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in AGN feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P\thinspaceV broad absorption. The presence of P\thinspaceV BALs indicates that other BALs like C\thinspaceIV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ\sigma) BAL variations from 10 quasars in our sample over rest frame time-scales between < 0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally < 1-10 pc from the SMBH using the transverse-motion scenario, and < 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NHN_{\textrm{H}} > 1022^{22} cm2^{-2}), yield outflow kinetic luminosities between ~ 0.001-1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.Comment: 19 pages, 3 figures, 4 tables, 1 supplementary figure, accepted to MNRA

    Ternary nucleation of H_2SO_4, NH_3 and H_2O

    Get PDF
    A classical theory of the ternary homogeneous nucleation of sulfuric acid—ammonia—water is presented. For NH3 mixing ratios exceeding 1 ppt, the presence of ammonia enhances the binary (sulfuric acid—water) nucleation rate by several orders of magnitude. However, the limiting component for ternary nucleation—as for binary nucleation—is sulfuric acid. The sulfuric acid concentration needed for significant ternary nucleation is several orders of magnitude below that required in binary case

    Self-Sustaining Oscillations in Complex Networks of Excitable Elements

    Full text link
    Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation circulates periodically. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops and explain key features of their distribution. This mechanism may play a role in epileptic seizures.Comment: 5 pages, 4 figures included, submitted to Phys. Rev. Let

    Flow distributed oscillation, flow velocity modulation and resonance

    Full text link
    We examine the effects of a periodically varying flow velocity on the standing and travelling wave patterns formed by the flow-distributed oscillation (FDO) mechanism. In the kinematic (or diffusionless) limit, the phase fronts undergo a simple, spatiotemporally periodic longitudinal displacement. On the other hand, when the diffusion is significant, periodic modulation of the velocity can disrupt the wave pattern, giving rise in the downstream region to travelling waves whose frequency is a rational multiple of the velocity perturbation frequency. We observe frequency locking at ratios of 1:1, 2:1 and 3:1, depending on the amplitude and frequency of the velocity modulation. This phenomenon can be viewed as a novel, rather subtle type of resonant forcing.Comment: submitted to Phys. Rev.
    corecore